Coarse Equivalence and Topological Couplings of Locally Compact Groups

نویسنده

  • CHRISTIAN ROSENDAL
چکیده

M. Gromov has shown that any two finitely generated groups Γ and Λ are quasi-isometric if and only if they admit a topological coupling, i.e., a commuting pair of proper continuous cocompact actions Γ y X x Λ on a locally compact Hausdorff space. This result is extended here to all (compactly generated) locally compact second-countable groups. In his seminal monograph on geometric group theory [1], M. Gromov formulated a topological criterion for quasi-isometry of finitely generated groups (see 0.2.C′ 2 in [1]). His idea was to replace the geometric objects, that is, the finitely generated groups, by a purely topological framework, namely, a locally compact Hausdorff space, which has no intrinsic large scale geometric structure. As it is, Gromov’s proof easily adapts to characterise coarse equivalence of arbitrary countable discrete groups, but thus far the case of locally compact groups has not been adressed and indeed Gromov’s construction is insufficient to deal with these. The present paper presents a solution to this problem by establishing the following theorem. Theorem 1. Two locally compact second-countable groups are coarsely equivalent if and only if they admit a topological coupling. As coarse equivalence of locally compact, compactly generated groups is just quasi-isometry, we have the following corollary. Corollary 2. Two compactly generated, locally compact second-countable groups are quasi-isometric if and only if they admit a topological coupling. Let us recall that a topological coupling of two locally compact groups G and H is a pair G y X x H of commuting, proper and cocompact continuous actions on a non-empty locally compact Hausdorff space X. Here the actions are proper if, for every compact subset K ⊆ X, the sets {g ∈ G | gK ∩ K 6= ∅}, {h ∈ H | Kh ∩ K 6= ∅}

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

-

In this paper we give some characterizations of topological extreme amenability. Also we answer a question raised by Ling [5]. In particular we prove that if T is a Borel subset of a locally compact semigroup S such that M(S)* has a multiplicative topological left invariant mean then T is topological left lumpy if and only if there is a multiplicative topological left invariant mean M on M(S)* ...

متن کامل

TOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY

In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017